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1 Institute of Space Sciences, Bucharest-Măgurele, P.O. Box MG 23, 76900, Romania
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Abstract. By using Feynman’s path integral formalism in the second order for the relativistic Lagrangian
for a spinless particle in a gauge field and applying the covariant derivative instead of the commonly used
derivative, but without knowing the operator expressions for the momentum and energy, one can obtain
the Klein–Gordon equation.

1 Introduction

Nowadays there is a general belief that there are several
equivalent ways of describing nature, these, however, being
totally inequivalent in trying to guess the new laws in
physics [1]. Before testing the power of the predictability
of one way or the other, one would want to find out in
the first place the old well-known relativistic equations
by using the path integral formalism [2–13] in the case
of a relativistic Lagrangian. In this article we will treat
the simple case of a spin 0 free particle, i.e. the classical
Klein–Gordon equation, discovered in 1926 [14–16].

The authors suggest that for a particle in an external
gauge field the simplest way of doing this is to replace
the commonly used derivative with the covariant deriva-
tive in the Klein–Gordon equation for a free particle, as
is well known, instead of dealing with a more complicated
Lagrangian in the path integral formalism.

Moreover, one should use the relativistic Lagrangian in
the first quantization approach, instead of trying to guess
how the Lagrangian might look like, and introducing it in
the Euler–Lagrange equations and obtaining eventually
the well known relativistic equations, as in the quantum
field theories.
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2 Basic formalism

We will apply the path integral formalism [2–13] for sim-
plicity in the unidimensional case, and then we will make
a 3D generalization.

As is well known, the wave function Ψ0 (xf , tf) for a
particle to arrive at xf from xi = xf + η after a time
ε = tf − ti is given by

Ψ0 (xf , tf) =
∫ ∞

−∞
K (xf , tf , xi, ti)Ψ (xi,ti) dxi, (1)

where K (xf , tf , xi, ti) is the kernel for the particle in an
external gauge field which up to a normalization constant
factor A is

K (xf , tf , xi, ti) =
1
A

exp
(

iS
�

)
. (2)

In the first order approximation, we will use the action S
written as

S =
∫
Ldt � Lε. (3)

The relativistic Lagrangian for a particle in a gauge field
is given in the first quantization, by using the rest mass
of the particle m0, the gauge charge q, and a gauge field
ΦG ≡ (A, A0), by

L =
√

(p + pG)2 c2 +m2
0c

4 −m0c
2 − VG, (4)

pG =
qA

c
, (5)

VG = qA0. (6)

Now, one can notice that either one may choose to work
with the above defined relativistic Lagrangian and conse-
quently, to perform some long calculus when expanding
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the amplitude in the right hand side of (1) in the old
fashion of the path integral formalism [7,12], or to use the
relativistic Lagrangian for the free particle and then to in-
troduce the covariant derivative instead of the commonly
used derivative.

We use the relativistic expression for the particle mo-
mentum as usually defined:

p = mv = m0γv =
m0√
1 − β2

v, (7)

so we can rewrite the relativistic Lagrangian for a free
particle in the following form:

L = m0c
2

(
1√

1 − β2
− 1

)
. (8)

For very small space-time intervals we can define as usu-
ally:

β2 =
(v
c

)2
=
η2

c2ε2
. (9)

One can now replace the kernel K (xf , tf , xi, ti) for the free
particle in (1) by corroborating (2), (3), (8), and (9), and
by applying a cutoff on the integral limits implied by the
second postulate of the special relativity [17]:

Ψ0 (xf , ti + ε) =
1
A

e−(im0c2ε)/� (10)

× lim
δ→0

∫ cε−δ

−cε+δ

e(im0c3ε2)/(�
√

c2ε2−η2)Ψ (xf + η, ti) dη.

After expanding the final wave function Ψ0 (xf , ti + ε)
in the right hand side, the initial wave function Ψ(xf +
η, ti) and the exponential e−(im0c2ε)/� in the left hand side
can be written

Ψ + ε
∂Ψ

∂t
+
ε2

2!
∂2Ψ

∂t2
=

1
A

(
1 − im0c

2

�
ε− m2

0c
4

�2

ε2

2!

)

× lim
δ→0

∫ cε−δ

−cε+δ

e(im0c3ε2)/(�
√

c2ε2−η2)

×
(
Ψ +

∂Ψ

∂x
η +

∂2Ψ

∂x2

η2

2!

)
dη. (11)

Taking into account that the factor A (ε) is deduced
from the normalization condition,

1
A (ε)

lim
δ→0

∫ cε−δ

−cε+δ

e(im0c3ε2)/(�
√

c2ε2−η2)dη = 1, (12)

and also that
{
1, ε, ε2, ...

}
form a linear independent sys-

tem, and finally that the odd integrand on symmetric in-
tervals gives a zero contribution, we can identify the coef-
ficient of ε2 as follows [18]:

(
∂2

∂t2
− I2 (ε)

ε2
∂2

∂x2 +
m2

0c
4

�2

)
Ψ = 0. (13)

One can notice that after the evaluation of I2 (ε), defined
by

I2 (ε) =
2

A (ε)
lim
δ→0

∫ cε−δ

0
e(im0c3ε2)/(�

√
c2ε2−η2)η2dη,

(14)
only the terms in ε2 should be preserved.

Before evaluating the I2 (ε) integral, the authors wish
to lay stress on another characteristic feature of the path
integral formalism. We change the η variable, by choosing
e.g. η = cε sin p. Thus, (12) and (14) become

I0 (ε) =
2cε
A (ε)

lim
δ→0

∫ (π/2)−δ

0
e(im0c2ε)/(� cos p) cos pdp

= 1, (15)

I2 (ε) =
2 (cε)3

A (ε)
lim
δ→0

∫ (π/2)−δ

0
e(im0c2ε)/(� cos p) cos p sin2 pdp

= (cε)2 − Ja (ε) , (16)

where

Ja (ε) =
2 (cε)3

A (ε)
lim
δ→0

∫ (π/2)−δ

0
e(im0c2ε)/(� cos p) cos3 pdp.

(17)

3 The evaluation of the I2 (ε) integral

The whole path integral formalism was developed on the
assumption that the perturbative calculus for very small
space-time intervals could be performed [1–13], and that
consequently the greatest contribution of the above inte-
gral is given for small values of the phase θ = (m0c

2ε)/
(� cos p), i.e. in our case, for the nonrelativistic regime
where cos p ≈ 1.

We give for comparison the representation of the non-
relativistic versus relativistic pionic real component of the
propagator for different ε values (Fig. 1). The main con-
tribution of the integral for higher ε values comes from
the range of very small velocities p→ 0 as can be noticed
from Figs. 1e,g.

In order to see the sensitivity to the rest mass of the
particle m0, in Fig. 2 we represent the real part of the ker-
nel for a charged pion (m0 = 139MeV), a charged kaon
(m0 = 494MeV), and a neutral η0 (m0 = 548MeV) re-
spectively, for a fixed time ε. In order to obtain the same
shape of the kernel distribution for the same velocity of
the particle, one needs to shift towards smaller ε as m0 in-
creases. Therefore, it has become a strong belief of the au-
thors that the notion of the infinitesimal in physics could
be very different from as it is nowadays understood in
mathematics.

In order to evaluate the I2 (ε) integral, one may derive
Ja (ε) as a function of the ε parameter:

dJa

dε
=
(

3
ε

− d lnA (ε)
dε

)
Ja +

(
im0c

2

�

)
Jb (ε) , (18)
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Fig. 1a–h. The relativistic (left panels) versus nonrelativistic
pionic real part of the kernel for various small ε values

where

Jb (ε) =
2 (cε)3

A (ε)
lim
δ→0

∫ (π/2)−δ

0
e(im0c2ε)/(� cos p) cos2 pdp.

(19)
We apply the same procedure to the Jb (ε) integral and
obtain a first order linear differential equation:

dJb

dε
=
(

3
ε

− d lnA (ε)
dε

)
Jb +

im0c
4

�
ε2 = g (ε)Jb + h (ε) ,

(20)
having the following solution (see e.g. [19]):

Jb (ε) = exp
(

lim
ε0→0

∫ ε

ε0

g
(
ε

′)
dε

′
)

(21)

× lim
ε0→0

∫ ε

ε0

h
(
ε

′)
exp

(
− lim

ε0→0

∫ ε
′

ε0

g
(
ε

′′)
dε

′′
)

dε
′
.

We have taken into account that

lim
ε0→0

Ja (ε0) = lim
ε0→0

Jb (ε0) = 0. (22)

As compared with the nonrelativistic case [7,12], we shall
not be interested in how the normalization factor A (ε)
might look like, as long as for very small time intervals ε
one can extend an analytical function into a power series,
in our case from γ = 1, as can be noticed from (15):

A (ε) =
∞∑

γ=1

dγε
γ , (23)
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Fig. 2a–f. The real component of the propagator for several
spinless particles from the ground-state pseudoscalar octet of
SU(3): charged pions and kaons (upper and middle panels),
and neutral η0 respectively, for the chosen value of the time
elapsed between the final and the initial state of the particle:
ε = 0.5 fm/c

and therefore, by using the absolute convergence of the
above power series, to be able to switch it with the integral
during our next calculations.

After applying the well known formula

ek ln u = uk, (24)

we get the following expression for Jb (ε):

Jb (ε) =
im0c

4

�
lim

ε0→0

(
ε

ε0

)3
A (ε0)
A (ε)

× lim
ε0→0

∫ ε

ε0

(ε0
ε′

)3 A
(
ε

′
)

A (ε0)
ε

′2dε
′
. (25)

One can easily perform the whole calculus and finally
obtain

Jb (ε) =
im0c

4

�

∑∞
γ=1
dγε

γ+3

γ∑∞
γ=1dγεγ

. (26)

We shall now go to the result in (18), and repeating the
whole procedure one easily gets the final expression for
I2 (ε):

I2 (ε) = (cε)2 +
(
m0c

3

�

)2
∑∞

γ=1
dγε

γ+4

γ (γ + 1)∑∞
γ=1dγεγ

. (27)
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4 Final results and conclusions

One can also notice that the terms containing ε4 will not
contribute to (13), so we can rewrite after introducing (27)
and dividing by c2

∞∑
γ=1

dγε
γ

(
1
c2
∂2

∂t2
− ∂2

∂x2 +
m2

0c
2

�2

)
Ψ = 0. (28)

After we generalize to 3D the above equation, by using
the d’Alembertian operator

✷ ≡ gµν∂µ∂ν =
1
c2
∂2

∂t2
− ∂2

∂x2 − ∂2

∂y2
− ∂2

∂z2
, (29)

where the spacetime metric gµν in an inertial coordinate
system has only diagonal elements:

g11 = g22 = g33 = −g00 = −1, (30)

we finally obtain the Klein–Gordon equation for a free
particle: (

✷ +
m2

0c
2

�2

)
Ψ = 0 . (31)

Moreover, because the path integral formalism does not
impose any constraints on how the derivative might look
like, one can finally substitute the commonly used deriva-
tive with the covariant derivative:

Dµ = ∂µ +
iq
�c
Aµ, (32)

and obtain the Klein–Gordon equation for a particle in a
gauge field:(

✷ +
2iq
�c
Aµ∂µ +

iq
�c
∂µA

µ − q2

�2c2
AµA

µ +
m2

0c
2

�2

)
Ψ = 0,

(33)
which is usually written as(

DµD
µ +

m2
0c

2

�2

)
Ψ (x, t) = 0, (34)

or, by using the coupling constant g and the source of the
scalar field ρ (x, t):(

✷ +
m2

0c
2

�2

)
Ψ (x, t) = gρ (x, t) . (35)

One may notice that the Klein–Gordon equation for a par-
ticle, subject to no external influence, naturally emerged
from the path integral formalism without even knowing
the operator expressions for the momentum and energy.
Also, we performed the calculus in the first quantization
approach, with a Lorentz invariant Lagrangian that one
should not be forced to guess by starting from the form

of the field equation itself and then applying the Euler–
Lagrange equation.

The path integral formalism, which represents an ex-
tension of the principle of minimum action, could be the
most satisfactory way to find the old equations of physics
and maybe also to predict new ones.
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